338 research outputs found

    From Classical to Quantum Mechanics: "How to translate physical ideas into mathematical language"

    Full text link
    In this paper, we investigate the connection between Classical and Quantum Mechanics by dividing Quantum Theory in two parts: - General Quantum Axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoint operators and so on) - Quantum Mechanics properly that specifies the Hilbert space, the Heisenberg rule, the free Hamiltonian... We show that General Quantum Axiomatics (up to a supplementary "axiom of classicity") can be used as a non-standard mathematical ground to formulate all the ideas and equations of ordinary Classical Statistical Mechanics. So the question of a "true quantization" with "h" must be seen as an independent problem not directly related with quantum formalism. Moreover, this non-standard formulation of Classical Mechanics exhibits a new kind of operation with no classical counterpart: this operation is related to the "quantization process", and we show why quantization physically depends on group theory (Galileo group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows to map Classical Mechanics into Quantum Mechanics, giving all operators of Quantum Mechanics and Schrodinger equation. Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We find also that this approach gives a natural semi-classical formalism: some exact quantum results are obtained only using classical-like formula. So this procedure has the nice property of enlightening in a more comprehensible way both logical and analytical connection between classical and quantum pictures.Comment: 47 page

    On Foundation of the Generalized Nambu Mechanics

    Full text link
    We outline the basic principles of canonical formalism for the Nambu mechanics---a generalization of Hamiltonian mechanics proposed by Yoichiro Nambu in 1973. It is based on the notion of Nambu bracket which generalizes the Poisson bracket to the multiple operation of higher order n3n \geq 3 on classical observables and is described by Hambu-Hamilton equations of motion given by n1n-1 Hamiltonians. We introduce the fundamental identity for the Nambu bracket which replaces Jacobi identity as a consistency condition for the dynamics. We show that Nambu structure of given order defines a family of subordinated structures of lower order, including the Poisson structure, satisfying certain matching conditions. We introduce analogs of action from and principle of the least action for the Nambu mechanics and show how dynamics of loops (n2n-2-dimensional objects) naturally appears in this formalism. We discuss several approaches to the quantization problem and present explicit representation of Nambu-Heisenberg commutation relation for n=3n=3 case. We emphasize the role higher order algebraic operations and mathematical structures related with them play in passing from Hamilton's to Nambu's dynamical picture.Comment: 27 page

    The noncommutative harmonic oscillator in more than one dimensions

    Get PDF
    The noncommutative harmonic oscillator in arbitrary dimension is examined. It is shown that the \star-genvalue problem can be decomposed into separate harmonic oscillator equations for each dimension. The noncommutative plane is investigated in greater detail. The constraints for rotationally symmetric solutions and the corresponding two-dimensional harmonic oscillator are solved. The angular momentum operator is derived and its \star-genvalue problem is shown to be equivalent to the usual eigenvalue problem. The \star-genvalues for the angular momentum are found to depend on the energy difference of the oscillations in each dimension. Furthermore two examples of assymetric noncommutative harmonic oscillator are analysed. The first is the noncommutative two-dimensional Landau problem and the second is the three-dimensional harmonic oscillator with symmetrically noncommuting coordinates and momenta.Comment: 12 page

    Improvement of performances of continuous biological water treatment with periodic solutions

    Get PDF
    We study periodic solutions of the chemostat model under an integral constraint, either on the flow rate (Pb. 1) or on the substrate concentration (Pb. 2). We give conditions on the growth kinetics for which it is possible to improve the averaged water quality (Pb. 1) or the total quantity of treated water (Pb. 2) over a given time period, compared to steady-state. When this is possible, we characterize optimal periodic solutions and show a duality between the two optimization problems. The results are illustrated on four types of growth kinetics, given by Monod, Haldane, Hill and Contois functions

    The Moyal-Lie Theory of Phase Space Quantum Mechanics

    Get PDF
    A Lie algebraic approach to the unitary transformations in Weyl quantization is discussed. This approach, being formally equivalent to the \star-quantization, is an extension of the classical Poisson-Lie formalism which can be used as an efficient tool in the quantum phase space transformation theory.Comment: 15 pages, no figures, to appear in J. Phys. A (2001

    Landau Diamagnetism in Noncommutative Space and the Nonextensive Thermodynamics of Tsallis

    Full text link
    We consider the behavior of electrons in an external uniform magnetic field B where the space coordinates perpendicular to B are taken as noncommuting. This results in a generalization of standard thermodynamics. Calculating the susceptibility, we find that the usual Landau diamagnetism is modified. We also compute the susceptibility according to the nonextensive statistics of Tsallis for (1-q)<<1, in terms of the factorization approach. Two methods agree under certain conditions.Comment: Clarifications and new references. Version to appear in Phys.Lett.

    Wigner Trajectory Characteristics in Phase Space and Field Theory

    Get PDF
    Exact characteristic trajectories are specified for the time-propagating Wigner phase-space distribution function. They are especially simple---indeed, classical---for the quantized simple harmonic oscillator, which serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase space. Applications to duality transformations in field theory are discussed.Comment: 9 pages, LaTex2

    Quantization with maximally degenerate Poisson brackets: The harmonic oscillator!

    Full text link
    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems

    Weyl-Underhill-Emmrich quantization and the Stratonovich-Weyl quantizer

    Full text link
    Weyl-Underhill-Emmrich (WUE) quantization and its generalization are considered. It is shown that an axiomatic definition of the Stratonovich-Weyl (SW) quantizer leads to severe difficulties. Quantization on the cylinder within the WUE formalism is discussed.Comment: 15+1 pages, no figure

    A Path Integral Approach To Noncommutative Superspace

    Get PDF
    A path integral formula for the associative star-product of two superfields is proposed. It is a generalization of the Kontsevich-Cattaneo-Felder's formula for the star-product of functions of bosonic coordinates. The associativity of the star-product imposes certain conditions on the background of our sigma model. For generic background the action is not supersymmetric. The supersymmetry invariance of the action constrains the background and leads to a simple formula for the star-product.Comment: Latex 13 pages. v2: references and footnotes adde
    corecore